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INTRODUCT ION

Nonlinearities now appear regularly in all phases of aerodynamic
research. Experimenters in dynamic stability have particular reason
to be concerned about them, since the methods available for extract-
ing stability derivatives from dynamical data for the most part do
not acknowledge the presence of nonlinearities. When the aerodynamic
characteristics are nonlinear, these methods continue to give
results, but it becomes very difficult to say precisely what the
results mean. Consider, for example, the two widely used experi-
mental methods sketched below.

In the first method, the sting is brought to a fixed mean angle of
attack o and the model is forced to oscillate harmonically about
oy with a small amplitude ag. The work done per cycle is meas-
ured and identified with the aerodynamic damping derivative

Cmq + Cmg+ In the second method, the model is displaced from zero
angle of attack against the resistance of a spring and then released.
The decay of the free oscillation about zero is measured and iden-
tified with the damping derivative Cmq + Cmg . When the aerodynamic
moment is a linear function of its variables, the same value for the
damping derivative is obtained from both experiments. When the
moment is nonlinear, two entirely different results can be obtained.
Neither result is necessarily wrong; each merely reflects the par-
ticular method in use, which in turn reflects a particular facet of
the underlying nonlinear phenomenon.

Consider the analyst who must use these results to analyze
the motion of a vehicle in flight. If the motion he anticipates
consists of small deviations from a trim condition, the first result
may be applicable. If the motion he anticipates consists of large-
amplitude oscillations around zero, the second result may be
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applicable. But, suppose he anticipates the second and has results
only for the first. Or, suppose he can anticipate neither motion.

He has no assurance at all that the results at hand have any mean-
ing in his problem. Obviously, this sltuation imposes a severe
limitation on the usefulness of wind-tunnel measurements of stability
coefficients.

It is clear that if this limitation is to be overcome, results
from different facilities and different experimental techniques must
be made to correlate, so that they may be used interchangeably. In
other words, the experimental results must be freed from dependence
on the particular method used to determine them. A recent report
(ref. 1) addressed to this problem is briefly summarized in the
remainder of this note.

GENERAL FORM FOR THE AERODYNAMIC PITCHING MOMENT

Before the results of an experiment can be freed from the
method used to determine them, the true form of the equation govern-
ing the motion must be established. This form will, of course,
depend on the form of the aerodynamic forces and moments. The prob-
lem is, therefore, to write the aerodynamic forces and moments in a
form which is sufficiently general to apply to any of a wide variety
of possible motions. In the linear case, one achieves this by writ-
ing the forces and moments as a sum of terms involving stability
derivatives. The question then arises, do stability derivatives
even exist in the nonlinear case? Based upon the analysis of ref-
erence 1 the answer is yes, with certain strict reservations. For
the longitudinal case, involving arbitrary variations of angle of
attack o and angle of piteh 6, the aerodynamic pitching moment
has the following form

Cu(t) = Culewsa(t)) + (t) 5= Cmglewsalt))
+ &(4)7 Cnga(t)) (1)

The terms have the following meaning: The first term Cp(e;a(t))
is the familiar steady-state pitching-moment coefficient due to
angle of attack, evaluated at each instant as though the instan-
taneous value of a, af{t), were fixed for an infinite time at that
value. The infinity symbol as used in this notation is merely a
reminder that the flow is fixed for all time, that is, is steady
at the particular value of o under consideration. The second
term cmq(oo,-oc(t)) is the rate of change with 6 of the pitching-

moment coefficient that would be measured in a steady flow,
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evaluated at 6 =0 with « fixed for an infinite time (thus the
infinity sign again) at the instantaneous value o(t). The third
term Cmg 1is defined by means of an integral: It is the area
bounded by the indicial pitching-moment curve and the final value
of the curve, the indicial response being evaluated with « fixed
at the instantaneous value af(t) and with & fixed at zero.

It must be emphasized that the definitions just given for the
terms in equation (1) are precise and unique; they arise from a
rigorous analysis correct to the first order in frequency. Within
this order of approximation, alternative forms or definitions would
not be rigorously justifiable. Thus, for example, note that each
of the terms in equation (1) shows a dependence only on the instan-
taneous angle of attack a(t); to show a dependence on &(t), 8(t),
or higher Jderivatives of o and 6 would not be justifiable.
Equation (1) is the desired general form which should underlie all
special cases and apply to all particular motions.

FORM OF THE AERODYNAMIC PITCHING MOMENT IN A SPECTIAL CASE

Further specifications of the form of Cp(t) are possible in
particular cases. Let us consider one of these for a wind-tunnel
experiment. In most wind-tunnel experiments, the model is pinned
to a fixed point at its axis of rotation. Then & = &. For the
wind-tunnel experiment, therefore, Cmg and Cng simply add, and

Cm(t) takes the form

On(t) = Cn(=36(8)) + &) = [Omg(wsal(®)) + Omgla(e)]  (2)

Now suppose that the model under study is known from static tests

to have a static pitching-moment curve which is representable as

an odd cubic in a over a substantial range of «. Then Cpeo;a(t))
has the form of equation (3) below, and the rate of change of Cp
with «a, Cma(w;a(t)), has the form of an even quadratic in «

(eq. (4)).
Cp(w;a(t)) = ala + ba?) (3)

Cma(m;a(t)) = a + 3ba® ()

il

Since the boundary conditions which yield Cmq are very similar to
those which yield Cmy, it is very reasonable to assume that Cmq
likewise will show no more than an even quadratic dependence on a.
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Under similar conditions, it can be argued that Cm& also will be
an even quadratic in «. Then, so is the sum Cmq + Cms+ Thus,

Cmq(m;a(t)) = ¢ + da? (58)
Cmg (a(t)) = e + fo? (5b)

and
Cry + Cmg = ho + hpo? (5¢)

Alternatively, Cp, + Cp., can be written as a linear function of the
mg * Cng, 1inear

steady-state parameter Cma(m;a(t)) as shown below.

Cmg + Cmg =C + DCm, (0300(t) ) (6)

This particularly simple form for the damping coefficient has certain
consequences which could be checked experimentally.

EXPERIMENTAL CORRELATIONS

Now let us consider the main objective, correlation of
experimental results. We wish to show that, at least in certain
cases, knowledge of the form of the pitching-moment coefficient
enables one to free the results for damping coefficient obtained by
a particular experimental method from dependence on that method.

If the results from two very different experimental methods were
both freed from dependence on their respective methods, then those
results should correlate. Results which correlate can of course

be used interchangeably. If results from two very different motions
can be used interchangeably, then we are assured that either result
is a general one; that is, one which is applicable to any motion
whatever.

Let us assume that the model under consideration fulfills the
requirement discussed in the last section, namely, that its static
pitching-moment curve be g cubic in «. Then we anticipate that
the damping coefficient should be a quadratic in o or, alterna-
tively, a linear function of the static pitching-moment curve
slope Cm,(w;a(t)). Suppose this is true. Then this is the form
we expect whenever a particular experimental result for damping
coefficient is freed from the method of obtaining it. We next
consider how this might be achleved in specific experiments.
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EXPERIMENTAL TECHNIQUES

Consider the two very different experimental methods illustrated
in the previous sketch. The first, forced oscillations about a fixed
mean angle of attack ap»is shown again below.

The work required to drive the model is measured and equated to the
work done by the aerodynamic damping moment. In the linear case,
the work measured can be identified with a single, unique value of
the aerodynamic damping coefficient Cmq + Cmd. In the nonlinear

case, this is no longer true. Here, when the work measured is
identified with the work done by aerodynamic damping, the result
obtained depends on both the mean angle a and the oscillation
amplitude ag; that is, the result depends on the method used to
obtain it. The objective then is to free the result from this
dependence.

When the aerodynamic damping coefficient depends linearly on
the instantaneous value of the static pitching-moment curve slope
(i.e., eq. (6)), the work done by damping will have the form shown
in equation (7) where C and D are the same C and D in equation

Work/Cycle = C + DCrmey, (7N
where
3¢y, a2 d%c,

Cngy = 55 (w50m) + —5— 3 (CHEY) (8)
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That is, the work done by damping becomes a linear function of an
effective value of Cm@’ Cmae’ where Cmae can be evaluated from

static data and equation (8). Hence, plotting the work done by
damping against Cmme gives a straight line.

work/cycle
D
|
///////// C
—
Cmae

Note that the same straight line will be obtained for any value

of oscillation amplitude «g. The slope and zero intercept of the
line give the values of C and D. When these are substituted in
equation (6), together with the true static curve Cm (w;a(t)), the
form obtained for the damping coefficient Cmq + Cmd should then be

general - applicable to any motion whatever. This expectation can
be checked by an independent experiment.

The second method, to be used as a check on the generality of
the preceding result, is the well-known free-oscillation technique,
shown again below.
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The equation of motion for this system is

I8 .
3357 = Cp(t) + spring terms (9)
With the same model as the one used in the first experiment, the
static pitching-moment curve is a cubic in « and the damping
coefficient is a quadratic in a, so that the pitching moment
(eq. (2)) takes the form

Cp(t) = ala + ba®) + {‘;—Z (hg + hga?) (10)
(@]

Combining equations (9) and (10) yields the following for the equa,-
tion of motion

g ala + ba?) + al (ho + hga®) + spring terms (11)
qsSt Vo

In this form, the equation of motion is a combination of the Duffing
equation and the Van der Pol equation. An aspproximate solution to
the equation is obtainable from the Kryloff-Bogoliuboff method. TFit~
ting the solution to the measured motion history enables the evalua-
tion of the four constants a, b, hy, hs. These have a known
correspondence with the constants C and D used in the first
experiment; that is, C and D can be expressed as

h_a
C =ho - §%—
. (12)
-1
D = b

If the values of C and D computed from equations(12) agree with
those obtained in the first experiment, then we have shown that

two very different experimental methods can be made to yield results
which correlate. This in turn assures that the form which corre-
lates is a general one, applicable to any motion whatever.

SUGGESTED EXPERIMENT

The above discussion suggests an obvious experiment: Select a
model whose static pitching moment Cm(m;a) can be represented as a
cubic over a substantial range of «o. Carry out the two experiments
in the manner just described. If the results for Cmq + Cmy, can be
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expressed as a quadratic in o, and if the values of C and D agree
between the two experiments, this will gogpthboth as a confirmation
of the theory and a useful means of widening the applicability of
the experimental results. Finally, we point out that a linear rela-
tionship between Cmq + Cm& and Cma can be expected to obtain

under a number of circumstances other than those discussed here
(i.e., C a quadratic function of a). For example, a linear
relationship between Cmq + Cm& and CmOL can be expected to obtain

whatever the variation of Cma’ provided that Cmq is either small

or essentially independent of a. The sketch below shows an experi-
mental result which confirms this statement for a model whose value
of Cmq is known to be small. Note that Cmae is a complicated

function of «; nesvertheless, the relationship between work done and
Cmae is quite obviously linear.

am a°°
[} ao sz
a a2
o ]
oD 02/2
IS N k/cycle
g work/c
o g a0 y
work/cycle

)

_.Cmae

REFERENCE

1. Tobak, Murray, and Pearson, Walter E.: A Study of Nonlinear Dynamic

Longitudinal Stability. NASA TR R-209, 196k,



